A mathematical approach for secondary structure analysis can provide an eyehole to the RNA world
نویسنده
چکیده
CC-BY-NC 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. Abstract The RNA pseudoknot is a conserved secondary structure encountered in a number of ribozymes, which assume a central role in the RNA world hypothesis. However, RNA folding algorithms could not predict pseudoknots until recently. Analytic combinatorics – a newly arisen mathematical field – has introduced a way of enumerating different RNA configurations and quantifying RNA pseudoknot structure robustness and evolvability, two features that drive their molecular evolution. I will present a mathematician's viewpoint of RNA secondary structures, and explain how analytic combinatorics applied on RNA sequence to structure maps can represent a valuable tool for understanding RNA secondary structure evolution. Analytic combinatorics can be implemented for the optimization of RNA secondary structure prediction algorithms, the derivation of molecular evolution mathematical models, as well as in a number of biotechnological applications, such as biosensors, riboswitches etc. Moreover, it showcases how the integration of biology and mathematics can provide a different viewpoint into the RNA world.
منابع مشابه
Phylogenetic Analysis of Beta-Glucanase Producing Actinomycetes Strain TBG-CH22 - A Comparison of Conventional and Molecular Morphometric Approach
Actinomycetes are inexhaustible producers of commercially valuable metabolites, are continually screened for beneficial compounds. The taxonomic and phylogenetic study of novel actinomycetes strains are mostly based on conventional methods and primary DNA structure of 16s rRNA. Although 16s rRNA sequence is well accepted in phylogeny studies, its secondary structures have not been widely used. ...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملPhylogenetic Analysis of Beta-Glucanase Producing Actinomycetes Strain TBG-CH22 - A Comparison of Conventional and Molecular Morphometric Approach
Actinomycetes are inexhaustible producers of commercially valuable metabolites, are continually screened for beneficial compounds. The taxonomic and phylogenetic study of novel actinomycetes strains are mostly based on conventional methods and primary DNA structure of 16s rRNA. Although 16s rRNA sequence is well accepted in phylogeny studies, its secondary structures have not been widely used. ...
متن کاملIn silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کاملA Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کامل